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Utility function

. Some History

Generalities
» Since Bernoulli : Paradox of St Petersbourg
e Dou you prefer 1 dollar today
e or play to a lottery with gain 100 dollars
» Basically, Bernoulli assumed that the value given to a particular wealth
amount depends on its relative importance to total wealth.
» The utility function is a function of capital that can associate a certainty
equivalent to a given bet, as it is indifferent to take the bet or its
certainty equivalent.

» Logarithmic utility u(x) = log x



Utility function

. Regular Utility Function

» A regular utility function u is a (positive) function defined on [0, co)
e Concave : E(u(X)) < u(E(X))
e Increasing
e Inada condition : u(x) is a C3-function with marginal utility ux(.),

decreasing from 4o to 0.

» Convex Conjugate Utility U

1 is the Fenchel transform of —u(. — x)

Under Inada condition, (y) = sup,-, (u(t, x) — x y)

The optimum is achieved at uj(x*) = y, and —, = (ux(.))~"

(y) = u(=0y(y)) + ¥y (y)

» Certainty equivalent : E(u(X)) = u(c(X)) concavity = c(X) < E(X)



Utility function

. Risk Aversion coefficient

Quantities of interest
Uxx (X)
ux(x)

» Risk tolerance coefficient 7(x) = (a(x)) ™"

 Xuxx(X)

» Risk Aversion coefficient a(x) = — ey
X

, relative &(x) =

’

» Typical example : power utility For a € (0,1),
11—«
u(x) = 1X_ - with conjugate — i, (y) = —y '/




Utility function

. Basic optimization problem

» for given 2" convex family of random variables X7, and some state
price density Yy with E(Y7) <1,
maxE(u(X))|X € 2, with budget constraint E( Y7 X7) < x
» Solution via duality : Lagrange multiplier technics
o The problem is equivalent to : max{E(u(X) + y(x — Y7 X7)|X € 2" }
o If =iy (yYr) € £, then optimum is X7 = —i,(yYr)
e y is selected by achieved the budget constraint, if it is possible

B[y (yYr) Yr) = x
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Introduction
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Performance measurement in debate

Performance and risk measurement are fundamental in mathematical
finance, risk-management and portfolio optimization
An old new question

» For a long time, expected utility has been the standard for dynamic risk

» Extended into a robust formulation by taking into account ambiguity on
the "reference probability measure” by min-max point of view

max min Eq[u(X:
XreXx QeQ O[ ( T)]

In relation with risk measures (Foellmer, Schied)
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. Dynamic point of view

Dynamic view

» Expected utility is overly restrictive in expressing reasonable risk
aversion in temporal setting

» Intertemporal substitution and risk aversion are inflexibly linked

» Stochastic Differential Utility (Duffie, Epstein, Skiadas...) : the local
variation is depending on the expected future utility ;

» BSDE’s point of view
—dUi(é7) = g(t, Up, Z)dt — ZidW,,  Ur(é7) = u(€r) for given u

» For a given terminal utility function u, A solution consists into two
processes
e The progessive utility U;(&7)
o The progressive diffusion coefficient Z;
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. Investment Banking and Utility Theory

Remarks and Comments from M.Musiela, T.Zariphopoulo (2002-2009)

» Classical or recursive utilities are defined in isolation to the investment
opportunities given to agent

» The investor may want to use intertemporal diversification, l.e.
implement short, medium, long term strategies

» Need of intertemporal consistency of optimal strategies. Can the same
utility function be used for all time horizon ?

» At the optimum the investor should become indifferent to the investment
horizon.

+ C.Rogers +Berier+Tehranchi, Henderson-Obson, Zitkovic (2002-2011)
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Progressive and Consistent Dynamic Utilities

(g. Progressive Utility

Definition of Progressive Utility
» A progressive utility is a positive family U = {U(t, x) : t > 0, x > 0}
e Progressivity : for any x > 0, t — U(t, x) is a progressive random field
e Concavity : for t > 0, x > 0 — U(t, x) is an increasing concave function.
e Inada condition : U(., x) is a C?-function with marginal utility Ui(., .),
decreasing from 4o to 0.
e Initial condtion : u a deterministic positive C2-utility function with Inada
condition
Convex Conjugate Dynamic Utility U
» U is the Fenchel transform of —U(. — x)
e Under Inada condition, U(t,y) = sup, o ycq- (U(t,X) — xy)
o The optimum is achieved at Us(t, x*) = y, and —Uj(t,) = (Us(t,.)) "' (¥)

> U(tvy) = U(t= _U}//(tvy)) +yU,(/(t7 y)



Progressive and Consistent Dynamic Utilities
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. Consistent Dynamic Utility

Let 2 be a convex family of non negative portfolios, called Test porfolios
An 2 -consistent dynamic utility U(t, x) is a progressive utility s.t
» Consistency with the family of test portfolios

For any admissible wealth process X € 27, E(U(t, X;)) < +oo and
E(U(t, X;)/Fs) < U(s, Xs), ¥s < t.

» Existence of optimal For any initial wealth x > 0, there exists an optimal
wealth process (benchmark) X* € 27, X5 = x,

U(s, Xz) =E(U(t, X;")|Fs) Vs < t.
In short for any admissible wealth X € 27, U(t, X;) is a supermartingale,
and a martingale for the optimal benchmark X*.



Progressive and Consistent Dynamic Utilities
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A General Market Model |

Incomplete Market : Let W be a n-Brownian motion, a short rate process r;
and a risk premium vector 7;, and 2" the class of (positif) wealth processes
X" driven by the self-financing equation

dXr = Xp [ rdt + ke (dW; + 07 dt)], 07, ke € RY
» oy is the dxn volatility matrix, and o1.0 is invertible.

» Let 7; be the wealth proportions invested in the different assets, and

Kt = OtTt,

» Constraints : RY is a family of adapted subvector spaces in R”, typically
RY = o¢(RY), d < n.



Progressive and Consistent Dynamic Utilities
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. A General Market Model Il

» 77 € RY defined as the projection of n; on RY is the minimal risk
premium,

All processes are adapted with good integrability properties
Def A process Y is said to be a state price density or (adjoint process) if for
any € R, Y X" is a local martingale - there exists v ¢ R :

vy
Yy

= —ndt+ (v, — nf).dW;, v € RO



Progressive and Consistent Dynamic Utilities
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. Value Function of Classical Utility Problem

Classical problem : Backward point of view

» Given a utility function u(T, x) at given time horizon T, the problem at
time r is to maximize over all admissible portfolios starting from (r, x),
the conditional expected utility of the terminal wealth,

V(r,x,(u,T)) = esssUpxcx(rx E(U(T, X7)IF})
» Dynamic programming principle
V(ta Xtv (U, T)) = V(t7 Xh (V(t + he 3 (U‘ T))7 t+ h))v a.s.
» Maximum principle = Comparison theorem = concavity of V(r, x).

» Conc: V(t,x,(u, T)) = esssUpxexx) E[V(t+h Xein (u, T))|[F]is a
consistent progressive utility, with initial value v(0, x) = V(0, x, (u, T))



Progressive and Consistent Dynamic Utilities
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. Progressive Utility of It6 Type

Assume the progressive utility U to be a family of 116 semimartingales
with local characteristics (3, ) (S=drift, v= diffusion)

dU(t, x) = B(t, x)dt + ~(t, x)dW;
» Assume the conjugate progressive utility U to be also of 1t6 type.
dU(t, x) = B(t, x)dt + 5(t, x)dW;
Open questions at this stage

» Under which assumptions on (3, ~) the solution is concave and
increasing,

» What kind of relationship between (3,~) and (5, 7) ?

» Under which assumptions on (3, ) only, Uis also of 1t6 type

» Main difficulties come from the forward definition : Absence of
maximum principle or comparison theorem.



Progressive and Consistent Dynamic Utilities
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. Consistent Dynamic Utilities

v

Assume U to be 2 -consistent. How express on (3, v) the
supermartingale property of U(t, X*)

Is the convex conjugate utility associated with the same kind of
optimization problem ?

v

v

Existence of optimal solutions ?

In the classical backward framework,
e By maximum principle, Uy(t, X{ (X)) = Y{ (uy(x)).
e Y*(y) is the optimal solution of the dual problem

v

Open questions
» |s these properties still hold true

» Regularity of X;(x) and Y;(y) with respect of their initial condition ?

» If X;(x) is monotone, U,(t, x)) = Y; (U ((X;(x))~"))?
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Concavity and SDE

Concavity and Stochastic Dlfferential Equation

N

Concavity and SDE

Let us consider a progressive differentiable random field U, such that U and
Uy are It6 random fields with local characteristics (3,~) and (Sx, vx)-

(i) NECESSARY CONDITION If U is a progressive utility with conjugate U. Then
Uy(t,.) is decreasing in x from oo to 0, with inverse— U, (t, .).

dUx(t, .x) = Bx(t, X)dt + 7x(t, x).dW,
(i) Intrinsic SDE Then Uy(., x) = Z (ux(x)), where

» Z(z) is a strong solution of the following intrinsic SDE,
dzy = p(t, Z)dt + o(t, Z;) dW;, Zy =z

» with coefficients u(t, z) = Bx(t, —Uy(t, 2)), a(t, 2) := v (t, ~ Uy (t, 2)
with 1(,0) = 0, o(£,0) = 0

» which is increasing and differentiable on z with range (0, o).



Concavity and SDE

Utility and Primitive of Intrinsic SDE

dz, = u(t, Z)dt + o(t, Z:)dW,, Zo = 2

Characterization as primitive of monotone SDE
If the SDE has a unique strong solution Z (z), increasing and differentiable
in z from 0 to oo,

» For any utility u, Z;(ux(x)) is positive, decreasing progressive random
field, with range (o, 0).

» If Z (ux(x)) is integrable in a neighborhood of x = 0, the primitive
{U(t, x) fo Zi(ux(2))dz,t > 0,x > 0} is a progressive utility.



Concavity and SDE

. SDE with random coefficients

Protter , Kunita books
Lipschitz condition Let the one-dimensional SDE,
de = ,u(t, Z[)dt + O'(t, Zt)th,

v

Assume there exists C; and K; with fOT(Ct + KF)dt < 4o00.
Assume that ¢(¢,0) =0, o(¢,0)=0.and

v

[u(t, X, w)=p(t,y, w)| < Ce(w)|x=yl, [lo(t, x,w)=o(t,y,w)|| < Ki(w)[x—y]

v

Then, for any z € R, there exists a unique strong solution Z# of the
SDE increasing with respect to its initial condition Z, = z.

v

The range of the map z — Z(.,z) is |0, 400 and Z(., z) is integrable
near to 0 and to infinity.



Concavity and SDE

Applications to Progressive Utility

SUFFICIENT CONDITIONS If there exist random Lipschitz bounds C; and K?
integrable in time such that a.s,

18x(t, x) < Gt [Ux(t, X)1, - [l (8, X)[] < K [ Un(t, X))
1Brax(t, )| < Gt [Un (8, X)), [y (8, X) ] < Ki [Un (8, X))

Then the derivatives of the coefficients uy and oy are spatially bounded,
then the SDE has unique strong solution and U is a progressive utility.
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Dynamics of the conjugate dynamic Utility



Dynamics of the conjugate d

. [t0’s Ventcell Formula

For technical regularity problems see books of Kunita, or Carmona-Nualart.

» The identity U(t,y) = U(t, - U,(t,y)) + yU,(t, y) is based on the C?
random field U along the random process —Uy(t, ¥). Need to extension
of the It6’s formula.

» 1td’s Ventcell Formula Let F(t, x) be a C? 1t6 random field (3, v), such
that F,(t, x) is associated with (S3x,vx). For any It6 semimartingale X,

dF(t, Xt) = B(tv Xt)dt+7(ta Xt)th
1
+  F(t, X )dX; + EFXX(I‘, X ){(dX) + (dF(t, x), dXi)|x—x



Dynamics of the conjugate d

. Conjugate utility dynamics

» Apply this result to F(t, x) = U(t, x) + xy with X; = —U,(t, y) (assumed
to be It6), by observing that F(t,x) = 0 when x = —Uj,(t, y).

» Dynamics of the conjuguate utility Assume (U, U) with characteristics
(8,7) and (5,7) and (U, U,) associated with the derivatives.

1. 3
+ §UY}’(tﬂy)||7X(t7_Uy(tﬂy))llz dt



Dynamics of the conjugate d

. Marginal Conjuguate Utility

» Dynamics of the marginal conjuguate utility
Let (u, o) be the random coefficients of the SDE associated with Uy
p(t,z) = Be(t, ~Uy(t, 2)), o(t, 2) == (t, — Uy (t, 2)

» Define L7 to be the adjoint operator,
Lot = 30y (o (t,)|P0y) — u(t, ¥)3y -

» Then the inverse of —U,, Uy is a monotonic solution of the SPE, with
initial condition U, (0, y) = &, (y)

Change of variable SPDE
dG(ta y) = _Gy(t» y)U(t, .y)th + ZU’M(G)(t y)dt

» Other application : dynamic copula



A Consistent Dynamic Utility



. Drift Constraint

Let U be a It6-Ventzel regular utility and X* an admissible wealth
du(t,x) = B(t, x)dt +~(t, x)dW;, dXf = Xp[ridt + . (dW; + 07 dt)],
[t6-Ventcel Formula
dU(t, X{) = B(t, XF)dt + ~v(t, XF).dWs + (7 (1, X)), X k).
1
Ut XX 00X + (U8 XE)RXE + 2 U (6 X)X ) e 2

HJB type constraints

dU(t XE) = (Us(t, XEVXE e + (8 X)) AW,
1
(B XY+ Ut XWX+ 5 Una( X7 QUL X ) ) o,

Ux(t, x)n7 + vx(t, x)).

h S X R ) = 2 .
where (1., ) i= [lxw[® + 2xi. (S22 s




. Verification Theorem

» Verification Theorem Let v¢ be the orthogonal projection of v, on R7 ;
and Q*(t,x) = inf,ers Ot X, k) ;
The minimum of this quadratic form is achieved at the optimal policy «*

o xr{(X) = — g (Ut )7 + 9% (1 X))
° X*Q*(t,x) = — Tt 1 Ut X)n? + 5 (1, OIIE = —llxwi (x)]1?
» Drift constraint B(t, x) = —Ux(t, x)rex + 3 U (t, X) || x5 (t, X)||?
» Volatility The volatility v(t, x) verifies
Ut X7 + 751 %) = XU (£ X)7 (X) = v (8. %) s v (tx) € RT
» Decreasing utility When ~(t, x) = 0, classical optimal strategy
Ui(t.x)n7 = —Ug(t, x)xw7 ().



Utility Stochastic PDE

Optimal Wealth
» If k*(¢, x) is sufficiently smooth so that ¥x > 0 the equation

dX; = X; [ndt + w7 (X7).(AW; + 17 )]

has at least one positive solution X*, then U(t, X;) is a local martingale.
> if the local martingale (U(t, X;)),., is @ martingale, then the
progressive utility U is a 2"-consistent stochastic utility with optimal
wealth process X*.
» The semimartingale Ux(t, X;) is a state price density process,
AUy (t, X;') = Ux(t, X;7)[ — ridt + (n?(t, X;) — n7)).dWi]

where n,U’l(t, X) = %(t, x) is the orthogonal utility risk premium



Convex conjugate SPDE

Conjugate SPDE

» Let U be the conjugate of U, with 1t6-Ventzel regularity, then

dU(t,y) = B(t,—-Uy(t.y))dt +~(t,~U(t,y))dW: where
= _ 1 It )2
IB(tvx) - B(t,X) 2 U)/(lx(t,X)

» (t, x) is the solution of a minimization program achieved by the
projection of —ny UL(t, x) — ~4(t, x) on (R?)*, defined before as
vL(t, x)

> In new variable, 5(t, y) = 7(t, = Uy (t, y)), B(t.y) = B(t, Uyt y))

~ ~ -1 - . .
Bty = iy Uyt ) + o (107 vy + 3570 = 131 2.)
Yy




Convex consistent dual utility

Consistent Conjuguate Utility

Under previous assumption,

>

>

The conjugate utility U(L y) is a convex decreasing stochastic flow,
consistent with the family ¢ of semimartingales Y*, defined from

aYy = Y/[-nrdt + (v —ng)dWs, v € (RY)1]
There exists a dual optimal choice #*(t, y) = v (t, —U}’,(t, )
From any y > 0, the optimal dual process Y;(y) = Y/ (y) satisfies
Yi(ux(x)) = Us(t, X (x))
If X;(x) is strictly monotone in x, by taking its inverse X(t, x), we obtain
that Uy (t, x) = Y7 (ux((X(£, X)) -
No trivial calculation via stochastic calculus method.



. New parametrization of the SPDE

Volatility versus optimal strategies

» There is a one to one correspondence between the derivative of the
volatility v, and the optimal strategies «* and v*+

’)’g(t,X) = _UXX(taX)X’{*(t,X) - UX(taX)n?
’Y)%(tax) = UX(th)V*’J_(tv Ux(t, X))

» Using the notation f fo s)ds for the primitive of f, we have
Y(t,x) = —Ux(t,x)xs*(t,x) = U(t, x)n{

yE(x) = Dot Ue(t, X))
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. Dynamic Utilities with given optimal portfolio

Methodology : Let us start with a given optimal portfolio X*(x),
» In the classical utility optimization backward problem, He & Huang

(1994) (in Markovian framework) try to characterize the terminal utility
function, with a given optimal wealth X* . Constraint on X* also.

» Also interesting point of view of C.Rogers and co author.
» In the forward problem The problem is to diffuse the initial utility u using
the information given by the path of X*. Observe that :
@ The diffusion is not on u but on the derivative uy
e We have also to give the optimal state price density
» The only constraints are monotonicity of the both diffusion X* and Y*
with respect to their initial condition or “equivalently” some Lispchitz
condition on their coefficients



Desintegration results or Reverse Engineering

Main Result
» Assumption Assume the two equations admit monotonic solutions
ax;

ayy

X¢[redt + k7(XF).(dW; + nf dt)]
—Yi(X)[redt + (—vf (Y{) + nf)dWi]

with inverse processes 2" and &
» Assume that ux(x)X;(x) has a limit when x goes to infinity

» Construction Define the processes U and U by

00

U(t,x):/: Y (X 2z, Oy = [ Xe(=G,(0(t, 2)))dz.

y

» Uis a 2 -consistent stochastic utility satisfying the HJB type SPDE,
and U its % -consistent conjugate utility with optimal proc. X* and Y*.
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Linear optimal processes |

Assume that X(x) = xX{(1) = x X and Y{(y) = yXi(1) = y Y, and
Y7 X atrue martingale.

» The optimal policies X;* and Y;" do not depend on x and y

» The inverse processes are X (t,z) = z/X; and Y(t,z) = z/ Y{

» For , With initial utility v and linear
optimal portfolios

Uy(t, X7 (X)) = Y (ux(x)) = U(t, x) = Yy X7 u(x/ X))

» There exists an equivalent martingale measure Q*, and a numeraire X;*
such that in the new market U(t, X) = Yy X;u(x) is a Q* dynamic
consistent utility martingale.



. Power Utilities

P‘wer utility
> In particular if u(®(x) = ¥*== o €]0, 1], then U)(t, x) = Z{u(*)(x) is

«

a power utility with stochastic adjustment factor

Zt(a) = Yr (X"

» There exists an optimal par (X, Y*) with (ax} = —nf,v* = 0) such
that Z'*) is decreasing.
» Markovian case : Markovian setting for the market with factors ¢&;,
Z{) = ¢lo(t, &)
Backward calibration (He and Huang (1994) in the classical framework)
Find conditions to have U(®)(T, x) = u(®)(x)
> 2 =1 = X = (Y)Y

- o x wa g a2 apgvge 1SN



Utility ambiguity

Let us consider a agent with ambiguity on his utility ; he can made his
choice in a family U of consistent stochastic utilities.
» « is a parameter with values in |, equipped with a priori probability
measure u(da)
» the investor decides to allocate the initial wealth x into different initial
wealths x,(x) according to its anticipation, x = [, X, (x)u(d)
» he is looking for an optimal strategy as mixture of the individual optimal
strategies

WW=/WWMWWMH

monotone in x
» The main assumption is that the dual utility is a mixture of individual
dual utilities
0ty = [ O (t.y)ude)



Dual Mixture, and Sup-convolution

Dual Mixture

Let U (t,y) = J; U= (t, y)u(da)
» Ur(t,y) is a convex consistent dual utilities with the same set of
admissible state prices densities, if and only if there exists an
admissible adjoint process Y;*(y) optimal for all utilities U~

» Let i"(y) = [,0*(y)u(d) the dual initial utility. Then the optimal
wealth of the primal problem is X/ (x) = — U}/ (t, Yr(u(x)). ltisa
mixture of optimal wealths

/x*axa Ju(da),  xa(x) = — 2 (Ux(x))

» Sup-convolution result : Equilibrium, Pareto optimality,

n s



. Decreasing Utilities

» Applying this point of view to power decreasing utilities, we obtain one
part of the beautiful result of Thaleia,and Rogers, that is the "mixture” is
still decreasing consistent utility,

» but not the fact there not other decreasing utility.

» Interpretation in terms of sup convolution may be interesting



mE

Thank You for your attention !



s



Dynamic utilities from consumption and wealth |

» Extend the previous results to the case of dynamic utility functions to
take into account that the preferences of the agent may changes with
time.

» To get rid of the dependency on the maturity T.

» References : Musiela & Zariphopoulou, El Karoui & Mrad (dynamic
utility functions from terminal wealth), Berrier & Rogers & Tehranchi
(dynamic utility functions from consumption and terminal wealth).



. Dynamic utility with consumption

Definition : Dynamic utility from consumption
» U' and U? two positive progressive utilities
» For all admissible wealth and consumption processes (X*:¢%(.), c(.))
satisfying dX;"*" = —c.dt + dX;*" with X;"“" > 0
o UA(t, X ") + fot U'(s, cs)ds is a supermartingale.
e There exists an optimal pair (X*(.), ¢*(.)) for which it is a martingale.
Dual structure A pair of conjugate dynamic utility functions
» For all state price density Y”(y), the following process is a
submartingale : U2(t. Y (y)) + [ U'(s. YZ(y))ds.
» Their exists an optimum v* with a martingale property

> UL YT (0)) =ci (), y=ul(c)



s



. Motivations

Thanks to Isabelle Camilier, PhD
» Embedded long term interest rate risk in longevity-linked securities
(maturity up to 30 — 50 years.)
» Because of the lack of liquidity for long horizon, the standard financial
point of view cannot be easily extended.
» Abundant literature on the economic aspects of long-term

policy-making (Ekeland, Gollier, Weitzman...), often motivated by
ecological issues (Hourcade & Lecocq)



. The Ramsey Rule in Economics |

» Computation of a long term discount factor Ry (T).
» A representative agent with :

@ u utility function

e (3 pure time preference parameter

@ c aggregate consumption. Often a priori hypothesis are made on the form
of the consumption function.

» Ramsey rule (link between consumption and discounting) :

Ro(T) =6 — lT log E {Z((Z))] .

(deduced from the maximization of the agent’s intertemporal utility from
consumption with infinite horizon)



. The Ramsey Rule in Economics |l

» Very popular particular case (Ramsey, 1928) :
RO(T) - 3 + A/g',
B pure time preference parameter, ~ risk aversion, g growth rate.

» Example : Stern review on climate change (2006), with v = 1,
g=13%,8=01% — Ro(T) = 1.4%.

» Controversy between economists concerning parameters values.
Ro(T) =1.4% : $ 1 million in 100 years — $ 250,000 today.
Ro(T) = 3.5% : $ 1 million in 100 years — $ 32,000 today.



Consumption Optimization and Ramsey

Link between the state price density process and the marginal utility
from consumption.

L;(ta C;k) Yt* /t
— 12 =L —exp(— [ rds)Ly

where L;(y) is a change of proba measure with volatility —n7 + v;(cf)
Taking the expectation under the historical probability :
Ul(t,c; t -
EF [Ug((of:lo))} = EP [exp(— [, rsds)L; (co)] .
In the classical Backward case, c¢; depends on the expectation of some
function of the optimal path.

In the forward case, ¢; does not depend on the future



. Yields curve and Ramsey rule

» The yield curve The Ramsey rule is similar to price all zero-coupons (in
incomplete market) using the Davis Rule that is under the optimal dual
probability L;(y)

» Acceptable for small trade

» for large trade use a second order correction term (indifference
pricing ?)



. Conclusion

All Consistent dynamic utilities with a large degree of regularity
continuous strictly may be generated as above.

Valid for (R¢(x), t > 0,x > 0) supposed only convex sets.
Valid also for other classical optimization problem.
Work in progress :

e Progressive utility and consumption.

e Model with jump.

@ Application to the state dependent utilities.

Ref Paper : El Karoui N. and M’rad M. : An Exact Connection between two
Solvable SDEs and a Non Linear Utility Stochastic PDEs (2010-12) Arxiv.
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