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Some History

Generalities

I Since Bernoulli : Paradox of St Petersbourg

Dou you prefer 1 dollar today

or play to a lottery with gain 100 dollars

I Basically, Bernoulli assumed that the value given to a particular wealth

amount depends on its relative importance to total wealth.

I The utility function is a function of capital that can associate a certainty

equivalent to a given bet, as it is indifferent to take the bet or its

certainty equivalent.

I Logarithmic utility u(x) = log x
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Regular Utility Function

I A regular utility function u is a (positive) function defined on [0,∞)

Concave : E(u(X )) ≤ u(E(X ))

Increasing

Inada condition : u(x) is a C2-function with marginal utility ux(.),

decreasing from +∞ to 0.

I Convex Conjugate Utility ũ

ũ is the Fenchel transform of −u(.− x)

Under Inada condition, ũ(y) = supx>0

(
u(t , x)− x y

)
The optimum is achieved at u′x(x∗) = y , and −ũy = (ux(.))

−1

ũ(y) = u(−ũ′y (y)) + yũ′y (y)

I Certainty equivalent : E(u(X )) = u(c(X )) concavity =⇒ c(X ) ≤ E(X )
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Risk Aversion coefficient

Quantities of interest

I Risk Aversion coefficient α(x) = −uxx(x)
ux(x)

, relative α̂(x) = −xuxx(x)
ux(x)

,

I Risk tolerance coefficient τ(x) = (α(x))−1

I Typical example : power utility For α ∈ (0,1),

u(x) =
x1−α

1− α
with conjugate −ũy (y) = −y−1/α
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Basic optimization problem

I for given X convex family of random variables XT , and some state

price density YT with E(YT ) ≤ 1,

maxE(u(X ))|X ∈X , with budget constraint E(YT XT ) ≤ x

I Solution via duality : Lagrange multiplier technics

The problem is equivalent to : max{E(u(X ) + y(x − YT XT )|X ∈ X }
If −ũy (yYT ) ∈ X , then optimum is X∗T = −ũy (yYT )

y is selected by achieved the budget constraint, if it is possible

E[−ũy (yYT )YT ) = x
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Performance measurement in debate

Performance and risk measurement are fundamental in mathematical

finance, risk-management and portfolio optimization

An old new question

I For a long time, expected utility has been the standard for dynamic risk

I Extended into a robust formulation by taking into account ambiguity on

the ”reference probability measure” by min-max point of view

max
XT∈X

min
Q∈Q

EQ[u(XT )]

In relation with risk measures (Foellmer, Schied)
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Dynamic point of view

Dynamic view

I Expected utility is overly restrictive in expressing reasonable risk

aversion in temporal setting

I Intertemporal substitution and risk aversion are inflexibly linked

I Stochastic Differential Utility (Duffie, Epstein, Skiadas...) : the local

variation is depending on the expected future utility ;

I BSDE’s point of view

−dUt(ξT ) = g(t ,Ut ,Zt)dt − ZtdWt , UT (ξT ) = u(ξT ) for given u

I For a given terminal utility function u, A solution consists into two
processes

The progessive utility Ut(ξT )

The progressive diffusion coefficient Zt
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Investment Banking and Utility Theory

Remarks and Comments from M.Musiela, T.Zariphopoulo (2002-2009)

I Classical or recursive utilities are defined in isolation to the investment

opportunities given to agent

I The investor may want to use intertemporal diversification, I.e.

implement short, medium, long term strategies

I Need of intertemporal consistency of optimal strategies. Can the same

utility function be used for all time horizon ?

I At the optimum the investor should become indifferent to the investment

horizon.

+ C.Rogers +Berier+Tehranchi, Henderson-Obson, Zitkovic (2002-2011)
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Progressive Utility

Definition of Progressive Utility

I A progressive utility is a positive family U = {U(t , x) : t ≥ 0, x > 0}
Progressivity : for any x > 0, t 7→ U(t , x) is a progressive random field

Concavity : for t ≥ 0, x > 0 7→ U(t , x) is an increasing concave function.

Inada condition : U(., x) is a C2-function with marginal utility Ux(., .),

decreasing from +∞ to 0.

Initial condtion : u a deterministic positive C2-utility function with Inada

condition

Convex Conjugate Dynamic Utility Ũ

I Ũ is the Fenchel transform of −U(.− x)

Under Inada condition, Ũ(t , y) = supx>0,x∈Q+

(
U(t , x)− x y

)
The optimum is achieved at U ′x(t , x∗) = y , and −Ũ ′y (t , ) = (U ′x(t , .))−1(y)

I Ũ(t , y) = U(t ,−Ũ ′y (t , y)) + yŨ ′y (t , y)
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Consistent Dynamic Utility

Let X be a convex family of non negative portfolios, called Test porfolios

An X -consistent dynamic utility U(t , x) is a progressive utility s.t

I Consistency with the family of test portfolios

For any admissible wealth process X ∈X , E(U(t ,Xt)) < +∞ and

E(U(t ,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t .

I Existence of optimal For any initial wealth x > 0, there exists an optimal

wealth process (benchmark) X ∗ ∈X ,X ∗0 = x ,

U(s,X ∗s ) = E(U(t ,X ∗t )|Fs) ∀s ≤ t .

In short for any admissible wealth X ∈X , U(t ,Xt) is a supermartingale,

and a martingale for the optimal benchmark X ∗.
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A General Market Model I

Incomplete Market : Let W be a n-Brownian motion, a short rate process rt

and a risk premium vector ηt , and X the class of (positif) wealth processes

Xκ driven by the self-financing equation

dXκ
t = Xκ

t
[

rtdt + κt .(dWt + ησt dt)
]
, ησt , κt ∈ Rσt

I σt is the dxn volatility matrix, and σt .σ
>
t is invertible.

I Let πt be the wealth proportions invested in the different assets, and

κt = σtπt ,

I Constraints : Rσt is a family of adapted subvector spaces in Rn, typically

Rσt = σt(Rd ), d ≤ n.
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A General Market Model II

I ησt ∈ Rσt defined as the projection of ηt on Rσt is the minimal risk

premium,

All processes are adapted with good integrability properties

Def A process Y is said to be a state price density or (adjoint process) if for

any κ ∈ Rσ, Y.Xκ
. is a local martingale⇒ there exists ν ∈ Rσ,⊥ :

dY ν
t

Y ν
t

= − rtdt + (νt − ησt ).dWt , νt ∈ Rσ,⊥t
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Value Function of Classical Utility Problem

Classical problem : Backward point of view

I Given a utility function u(T , x) at given time horizon T, the problem at

time r is to maximize over all admissible portfolios starting from (r , x),

the conditional expected utility of the terminal wealth,

V (r , x , (u,T )) = ess supX∈X (r ,x) E(u(T ,XT )lFr )

I Dynamic programming principle

V (t ,Xt , (u,T )) = V (t ,Xt , (V (t + h, ., (u,T )), t + h)),a.s.

I Maximum principle =⇒ Comparison theorem =⇒ concavity of V (r , x).

I Conc : V (t , x , (u,T )) = ess supX∈X (t,x) E[V (t + h,Xt+h, (u,T ))|Ft ] is a

consistent progressive utility, with initial value v(0, x) = V (0, x , (u,T ))
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Progressive Utility of Itô Type

I Assume the progressive utility U to be a family of Itô semimartingales

with local characteristics (β, γ) (β=drift, γ= diffusion)

dU(t , x) = β(t , x)dt + γ(t , x)dWt

I Assume the conjugate progressive utility Ũ to be also of Itô type.

dŨ(t , x) = β̃(t , x)dt + γ̃(t , x)dWt

Open questions at this stage
I Under which assumptions on (β, γ) the solution is concave and

increasing,

I What kind of relationship between (β, γ) and (β̃, γ̃)?

I Under which assumptions on (β, γ) only, Ũ is also of Itô type

I Main difficulties come from the forward definition : Absence of

maximum principle or comparison theorem.
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Consistent Dynamic Utilities

I Assume U to be X -consistent. How express on (β, γ) the

supermartingale property of U(t ,Xκ
. )

I Is the convex conjugate utility associated with the same kind of

optimization problem ?

I Existence of optimal solutions ?
I In the classical backward framework,

By maximum principle, U ′x(t ,X∗t (x)) = Y ∗t (u′x(x)).

Y ∗. (y) is the optimal solution of the dual problem

Open questions
I Is these properties still hold true

I Regularity of X ∗t (x) and Y ∗t (y ) with respect of their initial condition ?

I If X ∗t (x) is monotone, U ′x(t , x)) = Y ∗t (u
′
x((X ∗t (x))

−1))?
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Concavity and Stochastic DIfferential Equation

Concavity and SDE

Let us consider a progressive differentiable random field U, such that U and

Ux are Itô random fields with local characteristics (β, γ) and (βx , γx).

(i) NECESSARY CONDITION If U is a progressive utility with conjugate Ũ. Then

Ux(t , .) is decreasing in x from∞ to 0, with inverse−Ũy (t , .).

dUx(t , .x) = βx(t , x)dt + γx(t , x).dWt

(ii) Intrinsic SDE Then Ux(., x) = Z.(ux(x)), where

I Z.(z) is a strong solution of the following intrinsic SDE,

dZt = µ(t ,Zt)dt + σ(t ,Zt)dWt , Z0 = z

I with coefficients µ(t , z) = βx(t ,−Ũy (t , z)), σ(t , z) := γx
(
t ,−Ũy (t , z)

with µ(t ,0) = 0, σ(t ,0) = 0

I which is increasing and differentiable on z with range (0,∞).
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Utility and Primitive of Intrinsic SDE

dZt = µ(t ,Zt)dt + σ(t ,Zt)dWt , Z0 = z

Characterization as primitive of monotone SDE

If the SDE has a unique strong solution Z.(z), increasing and differentiable

in z from 0 to∞,

I For any utility u, Zt(ux(x)) is positive, decreasing progressive random

field, with range (∞,0).

I If Z.(ux(x)) is integrable in a neighborhood of x = 0, the primitive

{U(t , x) =
∫ x

0 Zt(ux(z))dz, t ≥ 0, x > 0} is a progressive utility.
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SDE with random coefficients

Protter , Kunita books

Lipschitz condition Let the one-dimensional SDE,

dZt = µ(t ,Zt)dt + σ(t ,Zt)dWt ,

I Assume there exists Ct and Kt with
∫ T

0 (Ct + K 2
t )dt < +∞.

I Assume that µ(t ,0) ≡ 0, σ(t ,0) ≡ 0. and

|µ(t , x , ω)−µ(t , y , ω)| ≤ Ct(ω)|x−y |, ||σ(t , x , ω)−σ(t , y , ω)|| ≤ Kt(ω)|x−y |

I Then, for any z ∈ R+ there exists a unique strong solution Z z of the

SDE increasing with respect to its initial condition Z0 = z.

I The range of the map z 7→ Z (., z) is ]0,+∞[ and Z (., z) is integrable

near to 0 and to infinity.
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Applications to Progressive Utility

SUFFICIENT CONDITIONS If there exist random Lipschitz bounds Ct and K 2
t

integrable in time such that a.s,

||βx(t , x) ≤ Ct |Ux(t , x)|, ||γx(t , x)|| ≤ Kt |Ux(t , x)|

|βxx(t , x)| ≤ Ct |Uxx(t , x)|, ||γxx(t , x)|| ≤ Kt |Uxx(t , x)|

Then the derivatives of the coefficients µx and σx are spatially bounded,

then the SDE has unique strong solution and U is a progressive utility.
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Itô’s Ventcell Formula

For technical regularity problems see books of Kunita, or Carmona-Nualart.

I The identity Ũ(t , y) = U(t ,−Ũy (t , y)) + yŨy (t , y) is based on the C2

random field U along the random process −Ũy (t , y). Need to extension

of the Itô’s formula.

I Itô’s Ventcell Formula Let F (t , x) be a C2 Itô random field (β, γ), such

that Fx(t , x) is associated with (βx , γx). For any Itô semimartingale X ,

dF (t ,Xt) = β(t ,Xt)dt + γ(t ,Xt).dWt

+ Fx(t ,Xt)dXt +
1
2

Fxx(t ,Xt)〈dXt〉+ 〈dFx(t , x),dXt〉|x=Xt
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Conjugate utility dynamics

I Apply this result to F (t , x) = U(t , x) + xy with Xt = −Ũy (t , y) (assumed

to be Itô), by observing that Fx(t , x) = 0 when x = −Ũy (t , y).

I Dynamics of the conjuguate utility Assume (U, Ũ) with characteristics

(β, γ) and (β̃, γ̃) and (Ux , Ũy ) associated with the derivatives.

dŨ(t , y) = γ(t ,−Ũy (t , y)).dWt + β(t ,−Ũy (t , y))dt

+
1
2

Ũyy (t , y)‖γx
(
t ,−Ũy (t , y)

)
‖2 dt
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Marginal Conjuguate Utility

I Dynamics of the marginal conjuguate utility

Let (µ, σ) be the random coefficients of the SDE associated with Ux

µ(t , z) = βx(t ,−Ũy (t , z)), σ(t , z) := γx
(
t ,−Ũy (t , z)

I Define L̃σ,µ to be the adjoint operator,

L̃σ,µ = 1
2∂y (||σ(t , y)||2∂y )− µ(t , y)∂y .

I Then the inverse of −Ux , Ũy is a monotonic solution of the SPE, with

initial condition Ũy (0, y) = ũy (y)

Change of variable SPDE

dG(t , y) = −Gy (t , y)σ(t , y).dWt + L̃σ,µ(G)(t , y)dt

I Other application : dynamic copula
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Drift Constraint

Let U be a Itô-Ventzel regular utility and Xκ
. an admissible wealth

dU(t , x) = β(t , x)dt + γ(t , x)dWt , dXκ
t = Xκ

t [rtdt + κt .(dWt + ησt dt)],

Itô-Ventcel Formula

dU(t ,Xκ
t ) = β(t ,Xκ

t )dt + γ(t ,Xκ
t ).dWt + 〈γx(t ,Xκ

t ),X
κ
t κt〉dt .

+Ux(t ,Xκ
t )X

κ
t κtdXt +

(
Ux(t ,Xκ

t )rtXκ
t +

1
2

Uxx(t ,Xκ
t )(X

κ
t )

2‖κt‖2
)

dt

HJB type constraints

dU(t ,Xκ
t ) =

(
Ux(t ,Xκ

t )X
κ
t κt + γ(t ,Xκ

t )
)
.dWt

+
(
β(t ,Xκ

t ) + Ux(t ,Xκ
t )rtXκ

t +
1
2

Uxx(t ,Xκ
t )Q(t ,Xκ

t , κt)
)

dt ,

whereQ(t , x , κ) := ‖xκ‖2 + 2xκ.
(Ux(t , x)ησt + γx(t , x)

Uxx(t , x)
)
.
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Verification Theorem

I Verification Theorem Let γσx be the orthogonal projection of γx on Rσ ;

and Q∗(t , x) = infκ∈Rσ Q(t , x , κ) ;
The minimum of this quadratic form is achieved at the optimal policy κ∗

xκ∗t (x) = − 1
Uxx (t,x)

(
Ux(t , x)ησt + γσx (t , x)

)
x2Q∗(t , x) = − 1

Uxx (t,x)2
||Ux(t , x)ησt + γσx (t , x))||2 = −||xκ∗t (x)||2

I Drift constraint β(t , x) = −Ux(t , x)rtx + 1
2 Uxx(t , x)‖xκ∗t (t , x)‖2

I Volatility The volatility γ(t , x) verifies

U ′x(t , x)ησt + γ′x(t , x) = −xU
′′

xx(t , x)κ∗t (x)− ν⊥(t , x) : ν⊥(t , x) ∈ R
σ,⊥
t

I Decreasing utility When γ(t , x) ≡ 0, classical optimal strategy

U ′x(t , x)ησt = −U
′′

xx(t , x)xκ∗t (x).
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Utility Stochastic PDE

Optimal Wealth
I If κ∗(t , x) is sufficiently smooth so that ∀x > 0 the equation

dX ∗t = X ∗t
[
rtdt + κ∗t (X

∗
t ).(dWt + ησt dt)

]
has at least one positive solution X ∗, then U(t ,X ∗t ) is a local martingale.

I if the local martingale
(
U(t ,X ∗t )

)
t≥0 is a martingale, then the

progressive utility U is a X -consistent stochastic utility with optimal

wealth process X ∗.

I The semimartingale Ux(t ,X ∗t ) is a state price density process,

dUx(t ,X ∗t ) = Ux(t ,X ∗t )
[
− rtdt +

(
ηU,⊥

t (t ,X ∗t )− ησt )
)
.dWt

]
where ηU,⊥

t (t , x) = γ⊥x
Ux

(t , x) is the orthogonal utility risk premium
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Convex conjugate SPDE

Conjugate SPDE

I Let Ũ be the conjugate of U, with Itô-Ventzel regularity, then

dŨ(t , y) = β(t ,−Ũ ′y (t , y))dt + γ(t ,−Ũ ′y (t , y))dWt where

β(t , x) = β(t , x)− 1
2
‖γ′x(t , x)‖2

U ′′xx(t , x)

I β(t , x) is the solution of a minimization program achieved by the

projection of −ησt U ′x(t , x)− γ′x(t , x) on (Rσ)⊥, defined before as

ν⊥(t , x)

I In new variable, γ̃(t , y) = γ(t ,−Ũ ′y (t , y)), β̃(t , y) = β(t ,−Ũ ′y (t , y))

β̃(t , y) = rtyŨ ′y (t , y) +
−1

2Ũ ′′yy

(
‖(−ησt yŨ ′′yy + γ̃

′,σ
y )‖2 − ‖γ̃′y‖2

)
(t , y)
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Convex consistent dual utility

Consistent Conjuguate Utility

Under previous assumption,

I The conjugate utility Ũ(t , y) is a convex decreasing stochastic flow,

I consistent with the family Y of semimartingales Y ν , defined from

dY ν
t = Y ν

t [−rtdt + (νt − ησt )dWt , νt ∈ (Rσt )⊥]

I There exists a dual optimal choice ν̃∗(t , y) = ν⊥(t ,−Ũ ′y (t , y))

I From any y > 0, the optimal dual process Y ∗t (y) = Y ν̃∗

t (y) satisfies

Y ∗t (u
′
x(x)) = U ′x(t ,X ∗t (x))

I If X ∗t (x) is strictly monotone in x , by taking its inverse X (t , x), we obtain

that U ′x(t , x) = Y ∗t (ux((X (t , x))) .

No trivial calculation via stochastic calculus method.
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New parametrization of the SPDE

Volatility versus optimal strategies

I There is a one to one correspondence between the derivative of the

volatility γx and the optimal strategies κ∗ and ν∗,⊥

γσx (t , x) = −Uxx(t , x)xκ∗(t , x)− Ux(t , x)ησt

γ⊥x (t , x) = Ux(t , x)ν∗,⊥(t ,Ux(t , x))

I Using the notation f̂ (t) =
∫ t

0 f (s)ds for the primitive of f , we have

γσ(t , x) = − ̂Uxx(t , x)xκ∗(t , x)− U(t , x)ησt

γ⊥(t , x) = ν̂∗,⊥(t ,Ux(t , x))
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Dynamic Utilities with given optimal portfolio

Methodology : Let us start with a given optimal portfolio X ∗. (x),

I In the classical utility optimization backward problem, He & Huang

(1994) (in Markovian framework) try to characterize the terminal utility

function, with a given optimal wealth X ∗ . Constraint on X ∗ also.

I Also interesting point of view of C.Rogers and co author.

I In the forward problem The problem is to diffuse the initial utility u using
the information given by the path of X ∗. Observe that :

The diffusion is not on u but on the derivative ux

We have also to give the optimal state price density

I The only constraints are monotonicity of the both diffusion X ∗ and Y ∗

with respect to their initial condition or ”equivalently” some Lispchitz

condition on their coefficients
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Desintegration results or Reverse Engineering

Main Result
I Assumption Assume the two equations admit monotonic solutions

dX ∗t = X ∗t
[
rt dt + κ∗t (X

∗
t ).(dWt + ησt dt)

]
dY ∗t = −Y ∗t (x)

[
rt dt + (−ν∗t (Y ∗t ) + ησt )dWt

]
with inverse processes X and Y

I Assume that uxx(x)X ∗t (x) has a limit when x goes to infinity

I Construction Define the processes U and Ũ by

U(t , x) =
∫ x

0
Y ∗t (u

′(X (t , z)))dz, Ũ(t , y) =
∫ +∞

y
X∗t (−ũy (Y(t , z)))dz.

I U is a X -consistent stochastic utility satisfying the HJB type SPDE,

and Ũ its Y -consistent conjugate utility with optimal proc. X ∗ and Y ∗.
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Linear optimal processes I

Assume that X ∗t (x) = xX ∗t (1) = x X∗t and Y ∗t (y) = yX ∗t (1) = y Y ∗t , and

Y ∗t X ∗t a true martingale.

I The optimal policies X∗t and Y ∗t do not depend on x and y

I The inverse processes are X (t , z) = z/X∗t and Y(t , z) = z/Y ∗t

I For any consistent stochastic utility U, with initial utility u and linear

optimal portfolios

U ′x(t ,X
∗
t (x)) = Y ∗t (u

′
x(x)) =⇒ U(t , x) = Y ∗t X ∗t u(x/X ∗t )

I There exists an equivalent martingale measure Q∗, and a numeraire X ∗t
such that in the new market Û(t , x̂) = Y ∗t X ∗t u(x̂) is a Q∗ dynamic

consistent utility martingale.
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Power Utilities

Power utility
I In particular if u(α)(x) = x1−α

1−α , α ∈]0,1], then U(α)(t , x) = Z (α)
t u(α)(x) is

a power utility with stochastic adjustment factor

Z (α)
t = Y ∗t (X

∗
t )
α

I There exists an optimal par (X ∗t ,Y
∗) with (ακ∗t = −ησt , ν∗ = 0) such

that Z (α)
t is decreasing.

I Markovian case : Markovian setting for the market with factors ξt ,

Z (α)
t = φ(α)(t , ξt)

Backward calibration (He and Huang (1994) in the classical framework)

Find conditions to have U(α)(T , x) = u(α)(x)

I Z (α)
T = 1 =⇒ X ∗T = (Y ∗T )

−1/α

I The problem admits a solution only if (Y ∗T )
−1/α may be replicated by an

admissible portfolio.

I Not true in general in incomplete market.
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Utility ambiguity

Let us consider a agent with ambiguity on his utility ; he can made his

choice in a family Ũα of consistent stochastic utilities.
I α is a parameter with values in I, equipped with a priori probability

measure µ(dα)
I the investor decides to allocate the initial wealth x into different initial

wealths xα(x) according to its anticipation, x =
∫

I xα(x)µ(dα)
I he is looking for an optimal strategy as mixture of the individual optimal

strategies

X ∗t (x) =
∫

I
X ∗,αt (xα(x))µ(dα)

monotone in x
I The main assumption is that the dual utility is a mixture of individual

dual utilities

Ũµ(t , y) =
∫

I
Ũα(t , y)µ(dα)
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Dual Mixture, and Sup-convolution

Dual Mixture

Let Ũµ(t , y) =
∫

I Ũα(t , y)µ(dα)

I Ũµ(t , y) is a convex consistent dual utilities with the same set of

admissible state prices densities, if and only if there exists an

admissible adjoint process Y ∗t (y) optimal for all utilities Ũα

I Let ũµ(y) =
∫

I ũα(y)µ(dα) the dual initial utility. Then the optimal

wealth of the primal problem is X ∗t (x) = −Ũµ
y
(
t ,Y ∗t (u

µ
x (x)). It is a

mixture of optimal wealths

X ∗t (x) =
∫

I
X ∗,αt (xα(x))µ(dα), xα(x) = −ũαy (ux(x))

I Sup-convolution result : Equilibrium, Pareto optimality,

Uµ(t , x) = ess sup{
∫

I
Uα(t , xα)µ(dα)|

∫
I
xαµ(dα) = x}
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Decreasing Utilities

I Applying this point of view to power decreasing utilities, we obtain one

part of the beautiful result of Thaleia,and Rogers, that is the ”mixture” is

still decreasing consistent utility,

I but not the fact there not other decreasing utility.

I Interpretation in terms of sup convolution may be interesting
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Thank You for your attention !
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Dynamic utilities from consumption and wealth I

I Extend the previous results to the case of dynamic utility functions to

take into account that the preferences of the agent may changes with

time.

I To get rid of the dependency on the maturity T .

I References : Musiela & Zariphopoulou, El Karoui & Mrad (dynamic

utility functions from terminal wealth), Berrier & Rogers & Tehranchi

(dynamic utility functions from consumption and terminal wealth).
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Dynamic utility with consumption

Definition : Dynamic utility from consumption

I U1 and U2 two positive progressive utilities

I For all admissible wealth and consumption processes (X x,c,κ(.), c(.))
satisfying dX x,c,κ

t = −ctdt + dX x,κ
t with X x,c,κ

t ≥ 0

U2(t ,X x,c,κ
t ) +

∫ t
0 U1(s, cs)ds is a supermartingale.

There exists an optimal pair (X∗(.), c∗(.)) for which it is a martingale.

Dual structure A pair of conjugate dynamic utility functions

I For all state price density Y ν(y), the following process is a

submartingale : Ũ2(t ,Y ν
t (y)) +

∫ t
0 Ũ1(s,Y ν

s (y))ds.

I Their exists an optimum ν∗ with a martingale property

I Ũ1(t ,Y ν∗

t (y)) = c∗t (y), y = u1
c (c∗0 )



Utility function Introduction Progressive and Consistent Dynamic Utilities Concavity and SDE Dynamics of the conjugate dynamic Utility Consistent Dynamic Utility X -consistent utilities with given optimal portfolio Examples based on Mixture of stochastic utilities Dynamic utility with consumption Applications to Interest Rates

Plan

1 Utility function

2 Introduction

3 Progressive and Consistent Dynamic Utilities

4 Concavity and SDE

5 Dynamics of the conjugate dynamic Utility

6 Consistent Dynamic Utility

7 X -consistent utilities with given optimal portfolio

8 Examples based on Mixture of stochastic utilities

9 Dynamic utility with consumption

10 Applications to Interest Rates



Utility function Introduction Progressive and Consistent Dynamic Utilities Concavity and SDE Dynamics of the conjugate dynamic Utility Consistent Dynamic Utility X -consistent utilities with given optimal portfolio Examples based on Mixture of stochastic utilities Dynamic utility with consumption Applications to Interest Rates

Motivations

Thanks to Isabelle Camilier, PhD

I Embedded long term interest rate risk in longevity-linked securities

(maturity up to 30− 50 years.)

I Because of the lack of liquidity for long horizon, the standard financial

point of view cannot be easily extended.

I Abundant literature on the economic aspects of long-term

policy-making (Ekeland, Gollier, Weitzman...), often motivated by

ecological issues (Hourcade & Lecocq)
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The Ramsey Rule in Economics I

I Computation of a long term discount factor R0(T ).

I A representative agent with :

u utility function

β pure time preference parameter

c aggregate consumption. Often a priori hypothesis are made on the form

of the consumption function.

I Ramsey rule (link between consumption and discounting) :

R0(T ) = β − 1
T

logE
[

u′(cT )

u′(c0)

]
.

(deduced from the maximization of the agent’s intertemporal utility from

consumption with infinite horizon)
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The Ramsey Rule in Economics II

I Very popular particular case (Ramsey, 1928) :

R0(T ) = β + γg,

β pure time preference parameter, γ risk aversion, g growth rate.

I Example : Stern review on climate change (2006), with γ = 1,

g = 1.3%, β = 0.1%→ R0(T ) = 1.4%.

I Controversy between economists concerning parameters values.

R0(T ) = 1.4% : $ 1 million in 100 years→ $ 250,000 today.

R0(T ) = 3.5% : $ 1 million in 100 years→ $ 32,000 today.
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Consumption Optimization and Ramsey

rule

I Link between the state price density process and the marginal utility

from consumption.

U1
c (t , c∗t )

U1
c (0, c∗0 )

=
Y ∗t
y

= exp(−
∫ t

0
rsds)L∗t (y)

where L∗t (y) is a change of proba measure with volatility −ησt + ν∗t (c
∗
0 )

I Taking the expectation under the historical probability :

EP
[

U1
c (t,c

∗
t )

U1
c (0,c∗0 )

]
= EP

[
exp(−

∫ t
0 rsds)L∗t (c

∗
0 )
]
.

I In the classical Backward case, c∗0 depends on the expectation of some

function of the optimal path.

I In the forward case, c∗0 does not depend on the future
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Yields curve and Ramsey rule

I The yield curve The Ramsey rule is similar to price all zero-coupons (in

incomplete market) using the Davis Rule that is under the optimal dual

probability L∗t (y)

I Acceptable for small trade

I for large trade use a second order correction term (indifference

pricing ?)
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Conclusion

I All Consistent dynamic utilities with a large degree of regularity

continuous strictly may be generated as above.

I Valid for (Rσt (x), t ≥ 0, x > 0) supposed only convex sets.

I Valid also for other classical optimization problem.

I Work in progress :

Progressive utility and consumption.

Model with jump.

Application to the state dependent utilities.

Ref Paper : El Karoui N. and M’rad M. : An Exact Connection between two

Solvable SDEs and a Non Linear Utility Stochastic PDEs (2010-12) Arxiv.
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Thank You for your attention !
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